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Abstract. From the recently determined structure of the delafossite YCuO2.5, we argue that the Cu-O
network has nearly independent ∆ chains but with different interactions between the s = 1/2 spins.
Motivated by this observation, we study the ∆ chain for different ratios of the base-base and base-vertex
interactions, Jbb/Jbv. By exact diagonalization and extrapolation, we show that the elementary excitation
spectrum is the same for total spins Stot = 0 and 1, but not for Stot = 2, and has a gap only in the interval
0.4874(1) ≤ Jbb/Jbv ≤ 1.53(1). The gap, known to be dispersionless for Jbb = Jbv, is found to acquire
increasing k-dependence as Jbb/Jbv moves away from unity.

PACS. 75.50.Ee Antiferromagnetics – 75.10.Jm Quantized spin models – 75.10.-b General theory and
models of magnetic ordering – 75.40.Mg Numerical simulation studies

There is great interest in s = 1/2 antiferromagnetic
(AF) lattices including triangles, where the interplay be-
tween frustration and quantum effects yields interesting
physics. Twenty years ago, Shastry and Sutherland [1]
(SS) introduced a new class of quantum topological ex-
citations: isolated defects separating different regions of
broken translational symmetry. Since their proposal, the
search for models and real systems showing this behav-
ior has not stopped. The typical example is the symmet-
ric zigzag spin ladder, first addressed by Majumdar and
Ghosh [2] (MG), in which nearest-neighbor (NN) trian-
gles sharing a base site are also vertex-vertex coupled. Its
lowest-energy excitations are so-called kinks (K) and an-
tikinks (AK), defects separating domains corresponding to
one or the other of the twofold degenerate ground state,
both with similar characteristics and giving rise to a fi-
nite gap, ∆E ≈ 0.234J1 when the interaction J2 between
next-nearest-neighbors (NNN) is half that of NN spins J1

[3]. Then attention turned to the sawtooth or ∆ chain,
which consists of coupled s = 1/2 Heisenberg spins form-
ing triangles aligned in a chain with a common base site,
but without the vertex-vertex coupling. The ∆ chain has
unique properties. In fact, studies of this lattice [4,5], all
with bonds having the same interaction, have shown a re-
markable feature: the K-AK symmetry of the MG model
is broken here, yielding however a similar dispersionless
reduced gap for the low-lying excitation modes. Recently,
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the crossover from the MG model to the symmetric ∆
chain has been discussed [6].

Despite all this theoretical work, there is a lack of
clear physical realizations of any of the various models
discussed. However, experimental results that hold the
promise of displaying quantum topological excitations of
the SS type have recently become available. Specifically,
overdopedRCuO2+x (R =Y, La, etc.) delafossites [7] have
opened up new possibilities for studying hexagonal Cu
planes with AF interactions between the Cu2+ ions. De-
pending on the O-doping, different s = 1/2 effective lat-
tices are obtained, although with much weaker interac-
tions than high-Tc systems, which have comparable bond
lengths but 180◦ Cu-O-Cu angles. Studies [8] of the diluted
kagomé lattices of the x = 0.66 case predicted interest-
ing properties. The recent synthesis [9] of orthorhombic
2H single-phase samples of YCuO2.5 has allowed one to
elucidate its detailed structure [10], which appears as a
realization of the sawtooth lattice (Fig. 1). The additional
x = 0.5 oxygen ions are located at the center of alter-
nating sets of triangles, providing super-exchange paths
between s = 1/2 spins on nearly independent ∆ chains,
as previously suggested [4,5]. However, by carefully con-
sidering the measured angles and distances, we conclude
that the interactions between the two spins on the base
Jbb and between the base-vertex NN spins Jbv of the tri-
angles are different, most probably with Jbb < Jbv owing
to the smaller Cu-O-Cu angle. While the case Jbb = Jbv

has been quite extensively studied theoretically [4,5], to
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Fig. 1. Sawtooth chains in the triangular Cu planes of the
delafossite YCuO2.5. The extra O ions (white circles) for x =
0.5 are located at the center of particular triangles of Cu ions,
creating AF super-exchange only within these triangles. This
gives nearly independent ∆ chains, shown by thin black lines.
While Cu1 (black circles) adopts tetrahedral coordination with
two O ions in this plane (and with two other O out of the
plane), Cu2 (gray circles) adopts triangular coordination with
just one O in this plane. The angles and distances [10] suggest
a weaker Jbb interaction between Cu1-O-Cu1 bonds (bases of
the triangles) than for the Cu1-O-Cu2 base-vertex bond Jbv.

the best of our knowledge the case Jbb �= Jbv has never
been considered before.

Therefore, we here analyze the sawtooth lattice for ar-
bitrary ratios Jbb/Jbv of these AF couplings. The Hamil-
tonian is given by

H = Jbb

N∑

i=1

s2i−1 · s2i+1 +

Jbv

N∑

i=1

(s2i−1 · s2i + s2i · s2i+1), (1)

whereN is the number of triangles (2N spins) in the chain,
and si is the spin-1/2 operator at site i. There has been
no ab initio calculation for the Jbb/Jbv ratio in YCuO2.5.
Now, for either Jbb = 0 or Jbv = 0 the system is equivalent
to the Heisenberg chain, while for Jbb = Jbv we retrieve
the symmetric ∆ chain studied by Nakamura and Kubo
[4] and by Sen et al. [5]. Thus, to understand the YCuO2.5

compound, it is important to study the entire evolution of
the elementary excitations from the sawtooth lattice to the
Heisenberg chain as a function of Jbb/Jbv. The transition
between these two limits is not immediately obvious: the
symmetric ∆ chain has a dispersionless small gap with K
and AK excitations, while the isotropic Heisenberg chain
has no gap and pairs of spinon excitations exhibiting a
strongly dispersive spectrum.

We are unable to solve analytically and exactly for the
wave function and dispersion for arbitrary Jbb/Jbv, but
many of the important features of the spectrum can be
obtained with high numerical precision by a careful exact
diagonalization and extrapolation procedure. To test this
method, which includes larger clusters than before, and to

Table 1. Values of the lowest-energy excitations of the saw-
tooth lattice for Jbb = Jbv = J with total spin Stot and
wavevector k, after extrapolation to N → ∞. Units of J .

Stot gap (k = 0) gap (k = π/2) gap (k = π)

0 0.2153(8) 0.22(1) 0.216(2)
1 0.2156(2) 0.214(10) 0.216(2)
2 0.46(1) 0.49(8) 0.46(6)

make contact with earlier work, we first briefly reconsider
and extend results for the symmetric ∆ chain (Jbb = Jbv).
In this case, equation (1) has two degenerate ground states
with N dimers [11]. These ground states may be written
as states in which each spin on the base of a triangle forms
a singlet either with the following vertex spin (right, R-
dimer state) or with the previous one (left, L-dimer state),
that is,

|R〉 =
N∏

i=1

[2i− 1, 2i], |L〉 =
N∏

i=1

[2i, 2i+ 1], (2)

where [i, j] ≡ (|αiβj〉 − |βiαj〉)/
√

2, with αi (βi) denoting
the states with sz

i = 1/2 (−1/2) at the site i. These two
states are linearly independent and become orthogonal for
N → ∞. The existence of an excitation gap was rigorously
proved [11]. The elementary excitations are well-separated
K-AK-type domain walls separating regions of R-dimers
and L-dimers. AK has a dimer in its triangle, while an
AK does not. Curiously, they have very different charac-
teristics in this system [4,5]. AK has no excitation energy
and is localized, but an AK propagates with kinetic energy
within a region bounded by kinks. As a consequence of the
former property the low-lying excitation spectrum is dis-
persionless, and owing to the second one, the gap value is
considerably reduced compared to the energy of a trivial
triplet replacing a singlet dimer of the ground state.

We diagonalize the spin Hamiltonian in equation (1)
by the Lanczos algorithm, using periodic boundary condi-
tions with s2N+1 identified with s1. All sizes from N = 4–
12 triangles are calculated. After some experimentation,
including also forms containing exponentials, we found
that the simplest and one of the best methods to ex-
trapolate excitation energies to N → ∞ is to take the
finite-size term to be a polynomial in 1/N , whose coef-
ficients are determined by fitting. Details will be given
elsewhere. Table 1 displays the gaps found for k = 0,
π/2, and π for excitations with total spin Stot = 0, 1,
and 2, when Jbb = Jbv = J . (The wavevector k of an
eigenstate |ψ〉 is here defined such that Tn|ψ〉 = eikn|ψ〉,
where Tn is the translation operator by n triangles or 2n
spins.) The quoted numerical error, which arises entirely
from the extrapolation, is defined to be twice the change
in the result upon discarding the data of the largest sys-
tem calculated (12 triangles) and repeating the extrapola-
tion. Table 1 confirms the gap to be dispersionless, within
numerical error [4,5]. The gap for k = 0 and Stot = 1,
∆E = 0.2156(2)J , agrees with, but is more precise than,
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Fig. 2. Low-lying excitation spectra of the sawtooth lattice for
Jbb/Jbv < 1. The dashed line corresponds to Jbb = Jbv, while
the Jbb = 0 dotted-dashed curve to the Heisenberg chain (using
the definition of k for the ∆ chain). The gap was calculated
for the points shown by the dots, which were interpolated by
a polynomial with the constraint of zero gradient at k = π.

previous estimates [4,5]. We also find that, within numeri-
cal error, the Stot = 0 low-lying excitations become degen-
erate with the Stot = 1 gap as N → ∞, as conjectured by
[12]. However, the spectrum for Stot = 2 appears also to
be dispersionless with a gap about twice that for Stot = 1
or 0. This new result is contrary to a speculation [12] that
the excitation energies for higher spins might converge to
the same value as N → ∞.

Let us now turn to the case with Jbb �= Jbv. Fig-
ure 2 shows the evolution found for the low-lying triplet
(Stot = 1) excitation spectrum for Jbb/Jbv ≤ 1 (after
extrapolation to N → ∞). As Jbb decreases, the triplet
excitation energy decreases at k = 0 until it vanishes near
Jbb/Jbv ≈ 0.5, while for k = π it goes up. Progressively
a stronger k-dispersion appears, yielding for Jbb = 0 the
famous lower boundary expression [13] for the continuum
of excited triplet states for the isotropic s = 1/2 Heisen-
berg chain, ∆EL(k) = (π/2)Jbv| sink/2| (here rewritten
keeping the definition of k for our ∆ chain).

An accurate determination of the critical ratio Jbb/Jbv

< 1 required to produce a triplet gap may be made by the
method proposed in reference [14]. The idea is to map
this problem to a continuum field theory and take into
account the fact that in a fermion system with a fixed
number of particles umklapp scattering is the only inter-
action that splits the degeneracy of the two lowest excited
states. Therefore, the difference of their energies provides
a precise measure of the umklapp processes, which vanish
at the critical interaction ratio. For the ∆ chain, with N
finite and Jbb < Jbv, we find the first two excited states
to have spin-parity 0− and 1+ and to undergo a level-
crossing near Jbb/Jbv ≈ 0.5. As shown in Figure 3, the
value of Jbb/Jbv at the level crossing follows a polyno-
mial in 1/N2, and its extrapolation to N → ∞ yields
(Jbb/Jbv)crit = 0.4874(1).

Turning to the case Jbb/Jbv > 1, we show in Figure 4
how the Stot = 1 gap dispersion curves are modified. The
minimum gap is now found for k = π and decreases with
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Fig. 3. Variation of the critical interaction ratio for gap closure
when Jbb/Jbv < 1, as a function of the number of triangles N .
The polynomial extrapolation in 1/N2 yields the best estimate
of this critical value.
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Fig. 4. Dispersion curve for the gap to Stot = 1 excited states
of the sawtooth lattice with Jbb/Jbv > 1, compared to the
Jbb/Jbv = 1 case.

increasing interaction ratio. On the other hand, for large
interaction ratios the low-lying states become nearly de-
generate. This can be understood: we are again approach-
ing the Heisenberg chain, though just for the N spins on
the bases of the triangles, while the remaining N spins on
the vertex are only loosely coupled, leading to a complex of
2N nearly degenerate states. The evaluation of the critical
ratio for the closure of the gap thus becomes more com-
plicated (details will be given elsewhere), but an approach
related to that used above gives (Jbb/Jbv)crit = 1.53(1).

Figure 5 summarizes our main results for the low-lying
excitations of the sawtooth chain. A finite gap is found
only for interaction ratios within the interval 0.4874(1) ≤
Jbb/Jbv ≤ 1.53(1). The curve is asymmetric about Jbb =
Jbv.

While our above discussion of the excitation gap has
been explicitly just for Stot = 1 excitations, we note that
we have also been able to calculate many features of the
spectra for Stot = 0 with a numerical accuracy of better
than a few percent, finding agreement with the Stot = 1
values in all cases. Examples where accurate calculations
are possible: the excitation energy at k = π for 0 ≤
Jbb/Jbv ≤ 1.5 and at k = 0 for 0.9 ≤ Jbb/Jbv ≤ 1.0. Also,
for Stot = 0 gap closure we find (Jbb/Jbv)crit = 1.51(3)
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Fig. 5. Gap to the lowest Stot = 1 excited states of the saw-
tooth lattice vs. Jbb/Jbv, after extrapolation to N → ∞. The
error is greater for Jbb/Jbv > 1 because states with k = π exist
only for even N , giving less points in the extrapolation.

compared to (Jbb/Jbv)crit = 1.53(1) for Stot = 1. This
provides strong numerical evidence that the lowest excita-
tion spectra are in fact four-fold degenerate (in the limit
N → ∞) for all 0 ≤ Jbb/Jbv ≤ 1.5, like the isotropic
s = 1/2 Heisenberg chain [15] and the symmetric ∆ chain
limits. Further details will be published elsewhere.

The recent crystallographic study of YCuO2.5 gives
values for the three sides of the triangles and for the Cu-
O-Cu angles. The consideration of these parameters and
of the different coordination of the Cu ions (see Fig. 1
and Ref. [10]) justifies taking the same base-vertex inter-
action Jbv for both sides of the triangle, but a different
Jbb along the base, as done here. The effect of a stronger
AF interaction in just one of the base-vertex bonds will
be to stabilize the dimer singlet ordering corresponding to
that direction, lifting the degeneracy of the gapped ground
state [16].

Now that good samples are available, measurements
are in progress to distinguish the different interactions and
to obtain a precise value of the gap, if one exists. It will
also be worthwhile to synthesize single crystals of YCuO2.5

in order to study the dispersion of the elementary excita-
tions. Comparison with Figures 2 and 4 will then allow
one to assess the applicability of the sawtooth lattice
model, equation (1), to this system, and if appropriate to
determine directly whether Jbb/Jbv > 1 or Jbb/Jbv < 1.

We hope that this first study for Jbb/Jbv �= 1 will help
with the interpretation of the experimental results for
these interesting systems.

We acknowledge D. Sen for useful correspondence. M.D. N.-R.
is indebted to the Grenoble High Magnetic Field Laboratory
for hospitality at the beginning of this work.
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